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1. Introduction

A multiwavelength scanning radiometer has been used to measure the

angular distribution of scattered radiation deep within a cloud layer at discrete

wavelengths between 0.5 and 2.3 _m. The relative angular distribution of the

intensity field at each wavelength is used to determine the similarity parame-

ter, and hence single scattering albedo, of the cloud at that wavelength using
the diffusion domain method. In addition to the spectral similarity parame-

ter, the analysis provides a good estimate of the optical thickness of the cloud
beneath the aircraft. In addition to the radiation measurements, we obtained

microphysical and thermodynamic measurements from which the expected

similarity parameter spectrum was calculated using accepted values of the re-

fractive index of liquid water and the transmission function of water vapor.

In this paper, we present an analysis of the results obtained for a 50 km

section of clean marine stratocumulus clouds on 10 July 1987. These observa-

tions were obtained off the coast of California from the University of Wash-

ington Convair C-131A aircraft as part of the First ISCCP Regional Experiment

(FIRE). We will present a comparison of the experimentally-derived similar-

ity parameter spectrum with that expected theoretically from the cloud drop-

let size distribution measured simultaneously from the aircraft. The mea-

surements and theory are in very close agreement for this case of clean mar-
itime clouds.

2. Results from observations on 10 July 1987

On 10 July 1987 the C-131A flew a tightly coordinated mission with the

ER-2 aircraft, consisting of continually flying legs of 145 km in length. The C-

131A was primarily making cloud radiation and cloud microphysics mea-

surements deep within the cloud layer, whereas the ER-2 was flying well

above the clouds. Figure 1 illustrates the zenith and nadir intensities as a
function of distance (time) for measurements obtained inside clouds near the

central portion of one of these flight lines. These data, corresponding to ob-
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Fig. 1. Zenith and nadir intensities as a function of distance along the flight track for

measurements obtained inside the clouds between 9:41 and 9:51 PDT. These measurements were

obtained at a wavelength X = 0.503 I_m.

servations obtained with the cloud absorption radiometer (King et al. 1986) at

= 0.503 _m, show that the zenith and nadir intensities were quite uniform

within these clouds. A careful examination of Fig. 1 suggests that the data

near the start of the flight line are too optically thin to have a diffusion do-

main, as evidenced by very low zenith and nadir intensity measurements.

Furthermore, the measurements near 24.9 and 28.0 km, though probably in a
cloud of sufficient optical thickness to have a diffusion domain, were ob-

tained too near the cloud top, so the zenith measurements were contami-

nated by directly transmitted solar radiation.

The scaled optical thickness between the aircraft flight level and the base

of the clouds was derived by applying the diffusion domain method to all

scan lines of Fig. 1 that satisfied the diffusion domain criteria (see King et al.
1989 for details). Figure 2 illustrates the optical thickness _c - • as a function of

distance, where we converted scaled optical thickness to optical thickness us-

ing the asymmetry factor g = 0.8579 applicable to this wavelength (_. = 0.503

_tm) and derived for the measured cloud droplet size distribution. Of the 1000

scan lines presented in Fig. 1, 611 passed the restrictive selection criteria de-

scribed in King et al. (1989). Among those measurements excluded from our

analysis were the optically thin scans at the beginning of the time series and

the measurements that were contaminated by the sun (at distances of 24.9 and

28.0 km). As expected, the measurements between 11.5 and 19.4 km that had a
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Fig. 2. Optical thickness beneath the aircraft for all measurements of Fig. 7 that satisfy the

diffusion domain criteria.

relatively low zenith intensity and relatively high nadir intensity correspond

to a region of large optical thickness beneath the aircraft.

Given the surface reflectivity and optical thickness (or scaled optical thick-

ness) of an individual scan at a specified wavelength, the intensity ratio I(z, -

1)/ I(% 1) is reduced solely to a function of similarity parameter s. Utilizing

formulas summarized in King et al. (1989), we were thus able to calculate the

intensity ratio as a function of similarity parameter and match this functional

relationship with the measured intensity ratio to derive a value of the

similarity parameter for a given measurement and wavelength.

Figure 3 illustrates the similarity parameter as a function of distance for

four wavelengths of the CAR determined in this manner. The similarity pa-
rameter s, defined as s = [(1 - co0)/(1 - (00g)] 1/2, is a function of the asymmetry

factor g and the single scattering albedo c00. The tendency for the similarity

parameter to decrease with increasing distance, especially noticeable at 1.64
and 2.20 _m, is due to a modest decrease in the effective radius of the cloud

droplets over this distance and not to a decrease in the absorption content of

the cloud droplets themselves. Due to the use of a filter wheel to measure the

intensity field in channels 8-13, diffusion domain measurements were ob-

tained in this time interval for between 71 and 87 scans, depending on filter

position, in contrast to 611 for the first seven, simultaneously sampled, chan-

nels.
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Fig. 3. Similarity parameter as a function of distance for four wave|engths of the cloud

absorption radiometer.

Figure 4 illustrates the mean and standard deviation of the spectral simi-
larity parameter for all thirteen channels of the CAR obtained from aircraft

measurements on 10 July 1987. Although the conversion from s to ¢00 is not

unique, due to the moderate spectral variation of g, we have provided a sin-

gle scattering albedo scale in this figure as a matter of convenience. This scale,

shown on the right-hand side of Fig. 4, is strictly applicable at k = 0.754 _tm.

Based on profile ascents and descents following these measurements, the stra-

tocumulus cloud layer was determined to be 440 m thick with a cloud base at
490 m.

In addition to the experimental results obtained using the CAR, Fig. 4 il-

lustrates calculations of the similarity parameter as a function of wavelength

for a cloud composed of water droplets only (solid curve) and droplets plus

saturated vapor at 10.3°C (dashed curve). The water droplet computations

were based on a combination of Mie theory and complex angular momentum

theory (Nussenzveig and Wiscombe 1980) applied to the measured cloud

droplet size distribution. The water vapor computations, on the other hand,

were based on assuming the cloud to be composed of saturated vapor and ap-

plying the necessary pressure and temperature scaling to obtain an equivalent

absorber amount (w = 0.41 g cm-2). The water vapor transmission functions

were then computed for this cloud layer at a resolution of 20 cm-1 using

LOWTRAN 5 (Kneizys et al. 1980). The absorption optical depths thus ob-
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Fig. 4. Calculations of the similarity parameter as a function of wavelength for water

droplets alone (solid line) and drops plus vapor (dashed line) for the cloud droplet size distri-

bution and water vapor conditions of the marine stratocumulus cloud of 10 July 1987. The single

scattering albedo scale is valid at X = 0.754 I.tm, where the cloud asymmetry factor g = 0.848.

The measurements derived from the cloud absorption radiometer (solid circles with error bars)

are averages of the similarity parameter derived by applying the diffusion domain method to

the 50 km section of this cloud.

tained were combined with the corresponding optical properties for cloud

droplets, where we further assumed that the total cloud optical thickness 're =
16 at a wavelength of 0.754 p.m.

The very close agreement between the measurements and theory shows
that, in this case, the absorption of solar radiation by the clouds can be ac-
counted for largely by the droplets and that the large drops (drizzle) did not

produce significant "anomalous absorption." Based on these results we are
forced to conclude that "anomalous absorption," as discussed by Twomey

(1976), Davies et al. (1984) and Stephens and Tsay (1989), was not significant in
the marine stratocumulus clouds that we sampled on 10 July 1987.
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